The Principle Of Resistance Temperature Device

By Tracie Knight


Temperature is measured using different methods depending on the environment. RTD or Resistance temperature device is based on the scientific fact that changing the temperature of a conductor will affect its resistance. The flow of electric current as a result of heating or cooling is used in calibrating the devices. The principle of correlation is used with a great deal of standardization.

The most common metal for this purpose is platinum. It is widely used because it displays consistency over a wide range. The level of accuracy is incredible which makes it reliable for industrial processes. It has an incredible sensitivity that makes it preferable over the others.

Heat is a vital element in processing and extraction of industrial products. Sensitivity to heat changes and response speed are important in achieving desired results. The metals must be studied carefully alongside the environment where the RTDs will be used. Sending the right information or signal to the control tower ensures that accurate steps are taken. This will prevent compromise on the processes.

Some of the sectors using this technology include automotive, HVAC, control sections and manufacturers of electronic appliances. It also is installed in testing and measuring units for production plants that need to monitor temperatures. The conductor used must be highly sensitive to achieve reliable levels of accuracy. Other metals used as conductors include nickel and copper.

The best element for use as a conductor must display consistency over a wide temperature range. Sensitivity to slight increment or reduction in the amount of heat is also important. The sensitivity of such processes as extraction means that the highest possible accuracy degree must be achieved. This prevents scenarios where the outcomes are compromised.

RTDs face the challenge of inconsistency when exposed to changing temperatures in a heating cycle. Conductors are damaged or have their properties altered at 660 degrees Celsius. They result in dangerous inconsistency. The conductors are easily contaminated by compounds generated because of heat. The impurities fall off from the sheath.

Impurities found at boundaries and changing temperatures have a significant effect on the behavior of conductors in RTDs. This has been clearly noted when it is below 270 degrees or 3 Kelvin. The elements used have very few phonons which explains their behavior. This affects their sensitivity to slight changes in temperature.

RTDs face the challenge of maintaining accuracy when making conversions for the purpose of calibration. There is a delicate relationship between temperature and resistance in conductors. The interference of other properties affects the outcome which could lead to erroneous results and compromise industrial processes.

Exposing conductors to continuous heat is likely to alter their properties. This leads to inconsistencies during a thermal cycle. This is defined as hysteresis and threatens to push RTDs out of some operations. It also affects their sensitivity thus limiting their use. The conductors, however, respond well to lower temperatures.

Heat is likely to be lost through the sheath and because of impurities that come into contact with conductors. The presence of foreign current is likely to affect the accuracy of reading given. Use of multiple wires is likely to affect the outcome. Metallic conductors used respond very slowly to changes during heating which is not appropriated for some sensitive operations.




About the Author:



No comments:

Post a Comment